NFRad—A Review of the New NIST Noise Measurement System.

C.A. Grosvenor, J. Randa, and R.L. Billinger

RF Technology Division
National Institute of Standards and Technology
Boulder, CO

55th ARFTG Conf., Boston, 6/00

Important Requirements and Features

- P Designed to permit practical noise parameter measurements.
- P Need speed, stability, repeatability.
- PByproduct: much less temperamental than old systems.
- P Several "extra" features not needed for noise temperature measurements.

P Speed:

- < Electronic switching.
- < Lookup tables for ' 's and O's; measured on vector network analyzer. Old radiometers used built-in sixports.
- < Requires stability and repeatability of ''s and 0's over months or years.</p>
- < Ten times as fast as old coaxial radiometers. Can calibrate about 10 to 15 frequencies in one day (DUT + check standard, 3 ports each).</p>

P Stability:

- < Relevant time periods several minutes to several hours.
- < Radiometer gain and noise figure must be stable over a few hours so that can calibrate it with cryogenic standard & then use cryo standard for amplifier input. (Not needed for noise-temperature measurements.)
- < Achieved by:
 - minimizing stress in receiver's mechanical design
 - water plates for lossy elements
 - water plates for temperature-sensitive components (mixers and rf amplifiers).

PRepeatability & long-term stability:

- < Switches: average over many (50) readings.
- < Connections: table top designed for good, repeatable connections.</p>
- < Other: long-term stability and repeatability from mechanical design of receiver and water plates for sensitive components.

P Stability and repeatability results will be shown in testing section.

P General system properties (8–12 GHz unit)

- < Noise temperature . 450 K (at 8 GHz)
- < Gain . 100 dB
- < Sensitivity: Std. dev. of mean . 3 K

Old System

- P Only one frequency can be measured per day.
- P Calibration of six-port needed.
- P Can only measure 2 devices.
- P Electrical Stabilitymarginal.

New System

- P 10 to 12 frequencies can be measured per day.
- P No six-port calibration is needed.
- P Can measure up to 4 devices at the same time.
- P Designed for good electrical and mechanical stability.

Temperature of unknown calculated using:

$$T_{x} = T_{a} + (T_{s} - T_{a}) \frac{M_{s} \mathbf{h}_{s}}{M_{x} \mathbf{h}_{x}} \left[\frac{\frac{P_{x}}{P_{a}} - 1}{\frac{P_{s}}{P_{a}} - 1} \right]$$

- ! x, a, s refer to the unkown, ambient and cryogenic standard, respectively.
- ! M_x and M_s are the mismatches at the DUT port and cryogenic port, respectively.
- ! O_x and O_s are the path efficiencies between the DUT port and radiometer and the cryogenic port and radiometer, respectively.
- ! T refers to temperatures, P refers to measured powers.

P M_x (referred to above) is the mismatch at plane 3, M_s is the mismatch at plane 2.

$$M_{x} = \frac{(1 - |\Gamma_{DUT}|^{2})(1 - |\Gamma_{L}|^{2})}{|1 - \Gamma_{DUT}\Gamma_{L}|^{2}}$$

P O_x is the path efficiency from plane 3 to plane 0, O_s is the path efficiency from plane 2 to plane 0.

Interior View of Switch Head Assembly

Testing

! Ambient Testing (should measure ~296 K)

- < 3 Thermistors used to calculate temperature
 - P In switch head
 - **P** In radiometer housing
 - P Just before water enters cryogenic standard

$$T_{Celsius} = \frac{T_2 - T_1}{R_1 - R_2} (R_1 - Meas) + T_1$$

 T_1 , T_2 , R_1 , R_2 are known calibration constants

Meas is the measured resistance of the thermistor

! Cryogenic Testing

- < Compare calculated boil-off temperatures with known values.
- < Correct for losses in coaxial line.
- < Value should compare to previously calculated values.

P Stability

- < To ensure the system does not drift appreciably
 - Type IV power meter off (baseline),
 - ambient standard
 - cryogenic standard
 - check standard
 - DUT

< Procedure

- Track power and temperature for a certain period of time, in our case we measured for 15 hours.
- Our 8 to 12 GHz radiometer drifted no more than 0.001 percent per hour.

P Isolation

- < Measure isolators in front of system to ensure that amplifier response is not dependent on source impedance.
- < In the 8 to 12 GHz radiometer, total isolation measured > 60 dB across band.

- Testing
 - Determines linear operating range of IF Section.
 - Procedure
 - 127 dB attenuator stepped from -40 dB to 0 dB.
 - 3 dB attenuator stepped into and out of circuit at each setting.
 - Ratio of power with 3 dB out to power with 3 dB in, is plotted vs.
 Input power.
 - System considered linear if ratio is within ± 0.1 percent.

P Mixer Linearity Test

- < Ensures small change in L.O. power does not result in large change in output power.
- < Must agree to within 15 K for 3 dB change in synthesizer output power.

PRF Linearity Test

- < Tests linearity of entire system.
- < Insert 3 dB attenuator in path and measure noise temperature (correcting for adaptor loss), remove 3 dB attenuator in path and ensure that change in DUT temperature <50 K.

Spurious signals

<Use 8 GHz LPF to remove desired signal (i.e. noise from noise source); measured noise temperature should then be ambient temperature. Harmonics of lower frequencies will cause departure from ambient.

Uncertainties

- ! Type A Uncertainties (Statistical)
 - < Typically around 0.05 percent
- ! Type B Uncertainties (Systematic)

	8 GHz	10 GHz	12 GHz
Cryogenic Std	0.315	0.322	0.329
Ambient Std	0.047	0.047	0.047
Y-factor	0.000	0.000	0.000
Mismatch	0.120	0.073	0.194
Asymmetry	0.329	0.330	0.330
Isolation	0.015	0.010	0.021
Freq Offset	0.002	0.000	0.002
Nonlinearity	0.100	0.100	0.100
Total	0.484	0.480	0.517

! Expanded combined (2F) uncertainties

$$U_{T_x} = 2\sqrt{u_A^2 + u_B^2} \approx 1\%$$

